Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 752
Filtrar
1.
Heliyon ; 10(7): e28548, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38571649

RESUMO

Purpose: The hand motor cortex (HMC) is a reliable anatomical landmark for identifying the precentral gyrus. The current study aimed to investigate the morphology of HMC on axial MRI of glioma patients, propose a new morphological classification of HMC and analyze the effect of tumors on the morphology of HMC. Methods: A retrospective study of 276 adult right-handed glioma patients was conducted. The morphology of HMC was assessed using T2 axial images. Subsequently, the distribution of morphological subtypes was compared between the bilateral hemispheres and the tumor-affected and healthy hemispheres. Finally, the influence of tumor pathology on the morphology of HMC was investigated. Results: A new morphological classification of HMC with four subtypes (Ω, ε, Ω-ε and ε-Ω) was proposed. No significant difference was identified in the distribution of morphological subtypes between the bilateral hemispheres (p = 0.0901, Chi-square test), or between the tumor-affected and healthy hemispheres (p = 0.3507, Chi-square test), and the morphology of HMC between the bilateral hemispheres were consistent (p < 0.0001, Kappa test). In addition, a significant difference was identified in the distribution of morphological subtypes between astrocytic and oligodendroglial tumors (p = 0.0135, Chi-square test). Conclusion: In the current study, we proposed a new morphological classification of HMC, and found that tumor could affect the morphology of HMC in glioma patients. The results can help our clinical practice, enabling us to further understand the spatial structure of the cerebral hemispheres.

3.
Pharmacol Res ; 203: 107174, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38580185

RESUMO

The emergence of immune checkpoint inhibitors (ICIs) has revolutionized the clinical treatment for tumor. However, the low response rate of ICIs remains the major obstacle for curing patients and effective approaches for patients with primary or secondary resistance to ICIs remain lacking. In this study, immune stimulating agent unmethylated CG-enriched (CpG) oligodeoxynucleotide (ODN) was locally injected into the tumor to trigger a robust immune response to eradicate cancer cells, while anti-CD25 antibody was applied to remove immunosuppressive regulatory T cells, which further enhanced the host immune activity to attack tumor systematically. The combination of CpG and anti-CD25 antibody obtained notable regression in mouse melanoma model. Furthermore, rechallenge of tumor cells in the xenograft model has resulted in smaller tumor volume, which demonstrated that the combinational treatment enhanced the activity of memory T cells. Remarkably, this combinational therapy presented significant efficacy on multiple types of tumors as well and was able to prevent relapse of tumor partially. Taken together, our combinational immunotherapy provides a new avenue to enhance the clinical outcomes of patients who are insensitive or resistant to ICIs treatments.

4.
Molecules ; 29(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611943

RESUMO

Luteolin-7-O-ß-d-glucuronide (LGU) is a major active flavonoid glycoside compound that is extracted from Ixeris sonchifolia (Bge.) Hance, and it is a Chinese medicinal herb mainly used for the treatment of coronary heart disease, angina pectoris, cerebral infarction, etc. In the present study, the neuroprotective effect of LGU was investigated in an oxygen glucose deprivation (OGD) model and a middle cerebral artery occlusion (MCAO) rat model. In vitro, LGU was found to effectively improve the OGD-induced decrease in neuronal viability and increase in neuronal death by a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and a lactate dehydrogenase (LDH) leakage rate assay, respectively. LGU was also found to inhibit OGD-induced intracellular Ca2+ overload, adenosine triphosphate (ATP) depletion, and mitochondrial membrane potential (MMP) decrease. By Western blotting analysis, LGU significantly inhibited the OGD-induced increase in expressions of receptor-interacting serine/threonine-protein kinase 3 (RIP3) and mixed lineage kinase domain-like protein (MLKL). Moreover, molecular docking analysis showed that LGU might bind to RIP3 more stably and firmly than the RIP3 inhibitor GSK872. Immunofluorescence combined with confocal laser analyses disclosed that LGU inhibited the aggregation of MLKL to the nucleus. Our results suggest that LGU ameliorates OGD-induced rat primary cortical neuronal injury via the regulation of the RIP3/MLKL signaling pathway in vitro. In vivo, LGU was proven, for the first time, to protect the cerebral ischemia in a rat middle cerebral artery occlusion (MCAO) model, as shown by improved neurological deficit scores, infarction volume rate, and brain water content rate. The present study provides new insights into the therapeutic potential of LGU in cerebral ischemia.


Assuntos
Lesões Encefálicas , Glucuronídeos , Luteolina , Animais , Ratos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Simulação de Acoplamento Molecular , Transdução de Sinais , Proteínas Quinases
5.
Clin Neurophysiol ; 162: 165-173, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38642482

RESUMO

OBJECTIVE: The current study examined the efficacy of the facial corticobulbar motor evoked potentials (FCoMEPs) and blink reflex (BR) on predicting postoperative facial nerve function during cerebellopontine angle (CPA) tumor surgery. METHODS: Data from 110 patients who underwent CPA tumor resection with intraoperative FCoMEPs and BR monitoring were retrospectively reviewed. The association between the amplitude reduction ratios of FCoMEPs and BR at the end of surgery and postoperative facial nerve function was determined. Subsequently, the optimal threshold of FCoMEPs and BR for predicting postoperative facial nerve dysfunction were determined by receiver operating characteristic curve analysis. RESULTS: Valid BR was record in 103 of 110 patients, whereas only 43 patients successfully recorded FCoMEP in orbicularis oculi muscle. A reduction over 50.3% in FCoMEP (O. oris) amplitude was identified as a predictor of postoperative facial nerve dysfunction (sensitivity, 77.1%; specificity, 83.6%). BR was another independent predictor of postoperative facial nerve deficit with excellent predictive performance, especially eyelid closure function. Its optimal cut-off value for predicting long-term postoperative eyelid closure dysfunction was was 51.0% (sensitivity, 94.4%; specificity, 94.4%). CONCLUSIONS: BR can compensate for the deficiencies of the FCoMEPs. The combination of BR and FCoMEPs can be used in CPA tumor surgery. SIGNIFICANCE: The study first proposed an optimal cut-off value of BR amplitude deterioration (50.0%) for predicting postoperative eyelid closure deficits in patients undergoing CPA tumor surgery.

6.
Plants (Basel) ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38592923

RESUMO

Melanosciadium is considered a monotypic genus and is also endemic to the southwest of China. No detailed phylogenetic studies or plastid genomes have been identified in Melanosciadium. In this study, the plastid genome sequence and nrDNA sequence were used for the phylogenetic analysis of Melanosciadium and its related groups. Angelica tsinlingensis was previously considered a synonym of Hansenia forbesii. Similarly, Ligusticum angelicifolium was previously thought to be the genus Angelica or Ligusticopsis. Through field observations and morphological evidence, we believe that the two species are more similar to M. pimpinelloideum in leaves, umbel rays, and fruits. Meanwhile, we found a new species from Anhui Province (eastern China) that is similar to M. pimpinelloideum and have named it M. Jinzhaiensis. We sequenced and assembled the complete plastid genomes of these species and another three Angelica species. The genome comparison results show that M. pimpinelloideum, A. tsinlingensis, Ligusticum angelicifolium, and M. jinzhaiensis have similarities to each other in the plastid genome size, gene number, and length of the LSC and IR regions; the plastid genomes of these species are distinct from those of the Angelica species. In addition, we reconstruct the phylogenetic relationships using both plastid genome sequences and nrDNA sequences. The phylogenetic analysis revealed that A. tsinlingensis, M. pimpinelloideum, L. angelicifolium, and M. jinzhaiensis are closely related to each other and form a monophyletic group with strong support within the Selineae clade. Consequently, A. tsinlingensis and L. angelicifolium should be classified as members of the genus Melanosciadium, and suitable taxonomical treatments have been proposed. Meanwhile, a comprehensive description of the new species, M. jinzhaiensis, is presented, encompassing its habitat environment and detailed morphological traits.

7.
ACS Appl Mater Interfaces ; 16(15): 19379-19390, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38568698

RESUMO

Photodriven chiral catalysis is the combination of photocatalysis and chiral catalysis and is considered one of the cleanest and most efficient methods for the synthesis of chiral compounds or drugs. Furthermore, due to the potential metal contamination associated with most metal-based catalysts, metal-free chiral photocatalysts are ideal candidates. In this work, we demonstrate that metal-free chiral carbon dots (CDs) exhibit size-dependent enantioselective photocatalytic activity. Using serine as the raw material, chiral CDs with well-defined structures and average sizes of 2.22, 3.01, 3.70, 4.77, and 7.21 nm were synthesized using the electrochemical method. These chiral CDs possess size-dependent band gaps and exhibit photoresponsive enantioselective catalytic activity toward the oxidation of dihydroxyphenylalanine (DOPA). Under light-assisted conditions, chiral CDs (L72, 500 µg/mL) exhibit high selectivity (selectivity factor: 2.07) and maintain a certain level of catalytic activity (1.34 µM/min) even at a low temperature of 5 °C. The high catalytic activity of the chiral CDs arises from their photoelectrons reducing O2 to generate O2-, as the active oxygen species for DOPA oxidation. The high enantioselectivity of the chiral CDs is attributed to their differential adsorption capabilities toward DOPA enantiomers. This study provides a new approach for designing metal-free chiral photocatalysts with high enantioselectivity.

8.
Physiol Mol Biol Plants ; 30(3): 467-481, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38633269

RESUMO

The basic helix-loop-helix (bHLH) transcription factor family is the second largest in plants. bHLH transcription factor is not only universally involved in plant growth and metabolism, including photomorphogenesis, light signal transduction, and secondary metabolism, but also plays an important role in plant response to stress. However, the function of bHLH TFs in Pseudoroegneria species has not been studied yet. Pseudoroegneria (Nevski) Á. Löve is a perennial genus of the Triticeae. Pseudoroegneria species are mostly distributed in arid/semi-arid areas and they show good drought tolerance. In this study, we identified 152 PlbHLH TFs in Pseudoroegneria libanotica, which could be classified into 15 groups. Collinearity analysis indicates that 122 PlbHLH genes share homology with wbHLH genes in wheat, and it has lower homology with AtbHLH genes in Arabidopsis. Based on transcriptome profiling under an experiment with three PEG concentrations (0%, 10%, and 20%), 10 up-regulated genes and 11 down-regulated PlbHLH genes were screened. Among them, PlbHLH6, PlbHLH55 and PlbHLH64 as candidate genes may be the key genes related to drought tolerance response at germination, and they have been demonstrated to respond to drought, salt, oxidative, heat, and heavy metal stress in yeast. This study lays the foundation for an in-depth study of the biological roles of PlbHLHs in Pse. libanotica, and discovered new drought-tolerance candidate genes to enhance the genetic background of Triticeae crops. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01433-w.

9.
Ecol Evol ; 14(3): e11171, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38495436

RESUMO

Roegneria yenchiana sp. nov. (Triticeae) is a new species collected from Shangri-la of Yunnan Province in China based on morphological, cytological, and molecular data. It is morphologically characterized by one spikelet per node, rectangular glums, awns flanked by two short mucros in lemmas, distinguished from other species of Roegneria. The genomic in situ hybridization results indicate that R. yenchiana is an allotetraploid, and its genomic constitution is StY. Phylogenetic analyses based on multiple loci suggested that R. yenchiana is closely related to Pseudoroegneria and Roegneria, and the Pseudoroegneria served as the maternal donors during its polyploid speciation.

10.
BMC Genomics ; 25(1): 253, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448864

RESUMO

BACKGROUND: The genus Pseudoroegneria (Nevski) Löve (Triticeae, Poaceae), whose genome symbol was designed as "St", accounts for more than 60% of perennial Triticeae species. The diploid species Psudoroegneria libanotica (2n = 14) contains the most ancient St genome, exhibited strong drought resistance, and was morphologically covered by cuticular wax on the aerial part. Therefore, the St-genome sequencing data could provide fundamental information for studies of genome evolution and reveal its mechanisms of cuticular wax and drought resistance. RESULTS: In this study, we reported the chromosome-level genome assembly for the St genome of Pse. libanotica, with a total size of 2.99 Gb. 46,369 protein-coding genes annotated and 71.62% was repeat sequences. Comparative analyses revealed that the genus Pseudoroegneria diverged during the middle and late Miocene. During this period, unique genes, gene family expansion, and contraction in Pse. libanotica were enriched in biotic and abiotic stresses, such as fatty acid biosynthesis which may greatly contribute to its drought adaption. Furthermore, we investigated genes associated with the cuticular wax formation and water deficit and found a new Kcs gene evm.TU.CTG175.54. It plays a critical role in the very long chain fatty acid (VLCFA) elongation from C18 to C26 in Pse. libanotica. The function needs more evidence to be verified. CONCLUSIONS: We sequenced and assembled the St genome in Triticeae and discovered a new KCS gene that plays a role in wax extension to cope with drought. Our study lays a foundation for the genome diversification of Triticeae species and deciphers cuticular wax formation genes involved in drought resistance.


Assuntos
Resistência à Seca , Elymus , Mapeamento Cromossômico , Cromossomos , Ácidos Graxos
11.
Front Physiol ; 15: 1306011, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455843

RESUMO

Skin soft tissue expansion is the process of obtaining excess skin mixed with skin development, wound healing, and mechanical stretching. Previous studies have reported that tissue expansion significantly induces epidermal proliferation throughout the skin. However, the mechanisms underlying epidermal regeneration during skin soft tissue expansion are yet to be clarified. Hair follicle stem cells (HFSCs) have been recognized as a promising approach for epidermal regeneration. This study examines HFSC-related epidermal regeneration mechanisms under expanded condition and proposes a potential method for its cellular and molecular regulation.

12.
Cell Stem Cell ; 31(4): 455-466.e4, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38508195

RESUMO

For precise genome editing via CRISPR/homology-directed repair (HDR), effective and safe editing of long-term engrafting hematopoietic stem cells (LT-HSCs) is required. The impact of HDR on true LT-HSC clonal dynamics in a relevant large animal model has not been studied. To track the output and clonality of HDR-edited cells and to provide a comparison to lentivirally transduced HSCs in vivo, we developed a competitive rhesus macaque (RM) autologous transplantation model, co-infusing HSCs transduced with a barcoded GFP-expressing lentiviral vector (LV) and HDR edited at the CD33 locus. CRISPR/HDR-edited cells showed a two-log decrease by 2 months following transplantation, with little improvement via p53 inhibition, in comparison to minimal loss of LV-transduced cells long term. HDR long-term clonality was oligoclonal in contrast to highly polyclonal LV-transduced HSCs. These results suggest marked clinically relevant differences in the impact of current genetic modification approaches on HSCs.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Animais , Macaca mulatta/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Lentivirus/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Células-Tronco Hematopoéticas , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética
13.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517696

RESUMO

With the rapid development of single-molecule sequencing (SMS) technologies, the output read length is continuously increasing. Mapping such reads onto a reference genome is one of the most fundamental tasks in sequence analysis. Mapping sensitivity is becoming a major concern since high sensitivity can detect more aligned regions on the reference and obtain more aligned bases, which are useful for downstream analysis. In this study, we present pathMap, a novel k-mer graph-based mapper that is specifically designed for mapping SMS reads with high sensitivity. By viewing the alignment chain as a path containing as many anchors as possible in the matched k-mer graph, pathMap treats chaining as a path selection problem in the directed graph. pathMap iteratively searches the longest path in the remaining nodes; more candidate chains with high quality can be effectively detected and aligned. Compared to other state-of-the-art mapping methods such as minimap2 and Winnowmap2, experiment results on simulated and real-life datasets demonstrate that pathMap obtains the number of mapped chains at least 11.50% more than its closest competitor and increases the mapping sensitivity by 17.28% and 13.84% of bases over the next-best mapper for Pacific Biosciences and Oxford Nanopore sequencing data, respectively. In addition, pathMap is more robust to sequence errors and more sensitive to species- and strain-specific identification of pathogens using MinION reads.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento por Nanoporos , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genoma , Software , Algoritmos
14.
J Cell Mol Med ; 28(7): e18221, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509759

RESUMO

Gliomas are the most common tumours in the central nervous system. In the present study, we aimed to find a promising anti-glioma compound and investigate the underlying molecular mechanism. Glioma cells were subjected to the 50 candidate compounds at a final concentration of 10 µM for 72 h, and CCK-8 was used to evaluate their cytotoxicity. NPS-2143, an antagonist of calcium-sensing receptor (CASR), was selected for further study due to its potent cytotoxicity to glioma cells. Our results showed that NPS-2143 could inhibit the proliferation of glioma cells and induce G1 phase cell cycle arrest. Meanwhile, NPS-2143 could induce glioma cell apoptosis by increasing the caspase-3/6/9 activity. NPS-2143 impaired the immigration and invasion ability of glioma cells by regulating the epithelial-mesenchymal transition process. Mechanically, NPS-2143 could inhibit autophagy by mediating the AKT-mTOR pathway. Bioinformatic analysis showed that the prognosis of glioma patients with low expression of CASR mRNA was better than those with high expression of CASR mRNA. Gene set enrichment analysis showed that CASR was associated with cell adhesion molecules and lysosomes in glioma. The nude mice xenograft model showed NPS-2143 could suppress glioma growth in vivo. In conclusion, NPS-2143 can suppress the glioma progression by inhibiting autophagy.


Assuntos
Glioma , Naftalenos , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Camundongos , Apoptose , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Serina-Treonina Quinases TOR/metabolismo , Naftalenos/farmacologia
15.
Transl Oncol ; 44: 101947, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555740

RESUMO

BACKGROUND: The KCa3.1 channel (KCNN4) is extensively investigated as an oncogene in human cancers. The current study aimed to explore the clinicopathological significance of KCNN4 expression in patients with primary adult-type diffuse gliomas. METHODS: Demographic, RNA-seq, and follow-up data of 477 patients were retrospectively reviewed. Patients were divided into the experimental and validation groups (278 and 199). KCNN4-related genes were determined by Pearson correlation analysis, and enrichment analyses and tumor-infiltrating immune cell assessments were applied to explore the potential mechanisms of KCNN4 involving glioma progression. The Kaplan-Meier method and the Cox regression analysis were used to evaluate the prognostic value of KCNN4 expression. RESULTS: KCNN4 showed significantly higher expression level in glioblastoma, IDH-wildtype, followed by astrocytoma, IDH-mutant and oligodendroglioma, IDH-mutant and 1p/19q-codeleted (p < 0.001). Enrichment analyses and tumor-infiltrating immune cell assessments suggested that KCNN4 could involve glioma progression through extracellular regulation, affecting immune response, and modulating subcellular trafficking. At last, the Kaplan-Meier analysis showed that high KCNN4 expression was significantly correlated with poor progression-free and overall survival (p < 0.001 for both). While multivariate Cox regression analysis obtained an insignificant result. CONCLUSIONS: KCNN4 was identified to be overexpressed in glioma cells and its expression level is positively related to tumor malignancy. It potentially participates in glioma biology by affecting extracellular regulation, subcellular trafficking, and immune escape. Additionally, high KCNN4 expression was correlated with poor survival outcomes of patients. The results can shed new light on the mechanisms of glioma progression, and provide a potential therapeutic target for treating gliomas.

16.
Genes Genomics ; 46(5): 589-599, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38536618

RESUMO

BACKGROUND: Elymus atratus (Nevski) Hand.-Mazz. is perennial hexaploid wheatgrass. It was assigned to the genus Elymus L. sensu stricto based on morphological characters. Its genome constitution has not been disentangled yet. OBJECTIVE: To identify the genome constitution and origin of E. atratus. METHODS: In this study, genomic in situ hybridization and fluorescence in situ hybridization, and phylogenetic analysis based on the Acc1, DMC1 and matK sequences were performed. RESULTS: Genomic in situ hybridization and fluorescence in situ hybridization results reveal that E. atratus 2n = 6x = 42 is composed of 14 St genome chromosomes, 14 H genome chromosomes, and 14 Y genome chromosomes including two H-Y type translocation chromosomes, suggesting that the genome formula of E. atratus is StStYYHH. The phylogenetic analysis based on Acc1 and DMC1 sequences not only shows that the Y genome originated in a separate diploid, but also suggests that Pseudoroegneria (St), Hordeum (H), and a diploid species with Y genome were the potential donors of E. atratus. Data from chloroplast DNA showed that the maternal donor of E. atratus contains the St genome. CONCLUSION: Elymus atratus is an allohexaploid species with StYH genome, which may have originated through the hybridization between an allotetraploid Roegneria (StY) species as the maternal donor and a diploid Hordeum (H) species as the paternal donor.


Assuntos
Elymus , Hordeum , Elymus/genética , Filogenia , Hibridização in Situ Fluorescente , Genoma de Planta , Hordeum/genética
17.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442353

RESUMO

Currently, the classification system of 2 subfamilies within Nemouridae has been widely accepted. However, monophyly of 2 subfamilies has not been well supported by molecular evidence. To date, only mitogenomes from genus Nemoura of the subfamily Nemourinae were used in previous phylogenetic studies and produced conflicting results with morphological studies. Herein, we analyzed mitogenomes of 3 Nemourinae species to reveal their mitogenomic characteristics and to examine genus-level classification among Nemouridae. In this study, the genome organization of 3 mitogenomes is highly conserved in gene order, nucleotide composition, codon usage, and amino acid composition. In 3 Nemourinae species, there is a high variation in nucleotide diversity among the 13 protein-coding genes (PCGs). The Ka/Ks values for all PCGs were far lower than 1, indicating that these genes were evolving under purifying selection. The phylogenetic analyses highly support Nemurella as the sister group to Ostrocerca. Meanwhile, Nemoura is recovered as the sister group of Malenka; they are grouped with other Amphinemurinae and emerged from a paraphyletic Nemourinae. More molecular data from different taxonomic groups are needed to understand stoneflies phylogeny and evolution.


Assuntos
Genoma Mitocondrial , Animais , Insetos/genética , Filogenia , Aminoácidos , Nucleotídeos
18.
Nanoscale ; 16(9): 4637-4646, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38314787

RESUMO

As one of the most intriguing nanozymes, the platinum (Pt) nanozyme has attracted tremendous research interest due to its various catalytic activities but its application is still limited by its poor colloidal stability and low affinity to substrates. Here, we design a highly stable Pt@carbon dot (Pt@CD) hybrid nanozyme with enhanced peroxidase (POD)-like activity (specific activity of 1877 U mg-1). The Pt@CDs catalyze the decomposition of hydrogen peroxide (H2O2) to produce singlet oxygen and hydroxyl radicals and exhibit high affinity to H2O2 and high specificity to 3,3',5,5'-tetramethyl-benzidine. We reveal that both the hydroxyl and carbonyl groups of CDs could coordinate with Pt2+ and then regulate the charge state of the Pt nanozyme, facilitating the formation of Pt@CDs and improving the POD-like activity of Pt@CDs. Colorimetric detection assays based on Pt@CDs for H2O2, dopamine, and glucose with a satisfactory detection performance are achieved. Moreover, the Pt@CDs show a H2O2-involving antibacterial effect by destroying the cell membrane. Our findings provide new opportunities for designing hybrid nanozymes with desirable stability and catalytic performance by using CDs as nucleating templates and stabilizers.


Assuntos
Carbono , Platina , Carbono/química , Platina/química , Peróxido de Hidrogênio/química , Glucose , Peroxidases/química , Peroxidase/química
19.
Water Res ; 253: 121312, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367383

RESUMO

Two iron-electrolysis assisted anammox/denitrification (EAD) systems, including the suspended sludge reactor (ESR) and biofilm reactor (EMR) were constructed for mainstream wastewater treatment, achieving 84.51±4.38 % and 87.23±3.31 % of TN removal efficiencies, respectively. Sludge extracellular polymeric substances (EPS) analysis, cell apoptosis detection and microbial analysis demonstrated that the strengthened cell lysate/apoptosis and EPS production acted as supplemental carbon sources to provide new ecological niches for heterotrophic bacteria. Therefore, NO3--N accumulated intrinsically during anammox reaction was reduced. The rising cell lysis and apoptosis in the ESR induced the decline of anammox and enzyme activities. In contrast, this inhibition was scavenged in EMR because of the more favorable environment and the significant increase in EPS. Moreover, ESR and EMR achieved efficient phosphorus removal (96.98±5.24 % and 96.98±4.35 %) due to the continued release of Fe2+ by the in-situ corrosion of iron anodes. The X-ray diffraction (XRD) indicated that vivianite was the dominant P recovery product in EAD systems. The anaerobic microenvironment and the abundant EPS in the biofilm system showed essential benefits in the mineralization of vivianite.


Assuntos
Compostos Ferrosos , Nitratos , Fosfatos , Esgotos , Águas Residuárias , Desnitrificação , Fósforo , Ferro , Oxidação Anaeróbia da Amônia , Eletrólise , Reatores Biológicos/microbiologia , Nitrogênio , Oxirredução
20.
Plant Dis ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381966

RESUMO

Stripe rust, caused by Puccinia striiformis f. sp tritici (Pst), is a destructive wheat disease pathogen. Thinopyrum elongatum is a valuable germplasm including diploid, tetraploid, and decaploid with plenty of biotic and abiotic resistance. In a previous study, we generated a stripe rust resistance wheat-tetraploid Th. elongatum 1E/1D substitution line K17-841-1. To further apply the wild germplasm for wheat breeding, we selected and obtained a new homozygous wheat-tetraploid Th. elongatum translocation line T1BS·1EL using genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), oligo-FISH-Painting, and the wheat 55K single nucleotide polymorphisms (SNPs) genotyping array. The T1BS·1EL is highly resistant to stripe rust at the seedling and adult stage. Pedigree and molecular marker analyses revealed that the resistance gene was located on chromosome arm 1EL of tetraploid Th. elongatum, tentatively named Yr1EL. Besides, we developed and validated 32 Simple Sequence Repeats (SSR) markers and two kompititive allele specific PCR (KASP) assays which were specific to tetraploid Th. elongatum chromosome arm 1EL to facilitate marker-assisted selection for alien 1EL stripe rust resistance breeding. This will help us explore and locate the stripe rust resistance gene mapping on the 1E chromosome and deploy it in the wheat breeding program.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...